Further Pure Maths 2

Exercise 1A

1 a $x^{2}-5 x-6<0 \quad$ subtracting $5 x+6$ from both sides
$(x-6)(x+1)<0 \quad$ factorising
So the critical values are $x=-1$ or 6
A sketch of $y=(x-6)(x+1)$ is

The solution corresponds to the section of the graph that is below the x-axis.
So the solution is $-1<x<6$

$$
\begin{array}{lll}
\text { b } & x^{2}+x \geqslant 6 & \text { multiplying out left-hand side } \\
& x^{2}+x-6 \geqslant 0 & \\
& (x+3)(x-2) \geqslant 0 & \text { factorising }
\end{array}
$$

So the critical values are $x=2$ or -3
A sketch of $y=(x+3)(x-2)$ is

The solution corresponds to the section of the graph that is above or on the x-axis.
So the solution is $x \leqslant-3$ or $x \geqslant 2$

1 c $2>x^{2}+1$ multplying both sides by $x^{2}+1$, you can do this because $x^{2}+1$ is always positive $0>x^{2}-1$
So the critical values are $x= \pm 1$
A sketch of $y=x^{2}-1$ is

The solution corresponds to the section of the graph that is below the x-axis.
So solution is $-1<x<1$
d To ensure multiplication by a positive quantity, multiply both sides by $\left(x^{2}-1\right)^{2}$
$\frac{2}{\left(x^{2}-1\right)} \times\left(x^{2}-1\right)^{z}>\left(x^{2}-1\right)^{2}$
$2\left(x^{2}-1\right)>\left(x^{2}-1\right)^{2}$
$0>\left(x^{2}-1\right)\left(\left(x^{2}-1\right)-2\right)$
$0>\left(x^{2}-1\right)\left(x^{2}-3\right)$
$0>(x-1)(x+1)(x-\sqrt{3})(x+\sqrt{3})$
So the critical values are $x= \pm 1, x= \pm \sqrt{3}$
The curve $y=(x-1)(x+1)(x-\sqrt{3})(x+\sqrt{3})$ is a quartic graph with positive x^{4} coefficient, so the curve starts in the top left and ends in the top right and passes through $(-\sqrt{3}, 0),(-1,0),(1,0)$ and $(\sqrt{3}, 0)$. A sketch of the curve is

The solution corresponds to the section of the graph that is below the x-axis.
So the solution is $-\sqrt{3}<x<-1$ or $1<x<\sqrt{3}$

Further Pure Maths 2

1 e To ensure multiplication by a positive quantity, multiply both sides by $(x-1)^{2}$

$$
\begin{aligned}
& \frac{x}{(x-1)} \times(x-1)^{2 x} \leqslant 2 x(x-1)^{2} \\
& x(x-1)-2 x(x-1)(x-1) \leqslant 0 \\
& x(x-1)(1-2(x-1)) \leqslant 0 \\
& x(x-1)(-2 x+3) \leqslant 0 \\
& x(x-1)(2 x-3) \geqslant 0 \quad \text { multiplying by }-1 \text { so change the direction of the inequality }
\end{aligned}
$$

So the critical values are $x=0,1$ or $\frac{3}{2}$
The curve $y=x(x-1)(2 x-3)$ is a cubic graph with positive x^{3} coefficient, so the curve starts in the bottom left and ends in the top right and passes through $(0,0),(1,0)$ and $\left(\frac{3}{2}, 0\right)$.
A sketch of the curve is

The solution corresponds to the section of the graph that is above or on the x-axis, excluding $x=1$ as the inequality is not defined for this value.
So the solution is $0 \leqslant x<1$ or $x \geqslant \frac{3}{2}$

Further Pure Maths 2

1 f To ensure multiplication by a positive quantity, multiply both sides by $(x+1)^{2} x^{2}$

$$
\begin{aligned}
& \frac{3}{(x+1)} \times(x+1)^{\not x} x^{2}<\frac{2}{\not x} \times(x+1)^{2} x^{2 x} \\
& x(x+1)(3 x-2(x+1))<0 \\
& x(x+1)(x-2)<0
\end{aligned}
$$

So the critical values are $x=0,-1$ or 2
The curve $y=x(x+1)(x-2)$ is a cubic graph with positive x^{3} coefficient, so the curve starts in the bottom left and ends in the top right and passes through $(-1,0),(0,0)$ and $(2,0)$.
A sketch of the curve is

The solution corresponds to the section of the graph that is below the x-axis.
So the solution is $x<-1$ or $0<x<2$
g To ensure multiplication by a positive quantity, multiply both sides by $(x+1)^{2}(x-1)^{2}$

$$
\begin{aligned}
& \frac{3}{(x+1)(x-1)} \times(x+1)^{\not x}(x-1)^{\not x}<(x+1)^{2}(x-1)^{2} \\
& 0<(x+1)(x-1)((x+1)(x-1)-3) \\
& 0<(x+1)(x-1)\left(x^{2}-1-3\right) \\
& 0<(x+1)(x-1)\left(x^{2}-4\right) \\
& 0<(x+1)(x-1)(x-2)(x+2)
\end{aligned}
$$

So the critical values are $x= \pm 1$ or ± 2
The curve $y=(x+1)(x-1)(x-2)(x+2)$ is a quartic graph with positive x^{4} coefficient, so the curve starts in the top left and ends in the top right and passes through $(-2,0),(-1,0),(1,0)$ and $(2,0)$. A sketch of the curve is

The solution corresponds to the section of the graph that is above the x-axis.
So the solution is $x<-2$ or $-1<x<1$ or $x>2$

Further Pure Maths 2

1 h To ensure multiplication by a positive quantity, multiply both sides by $x^{2}(x+1)^{2}(x-2)^{2}$
$\frac{2}{x^{2}} \times \chi^{\not 2}(x+1)^{2}(x-2)^{2} \geqslant \frac{3 x^{2}(x+1)^{\underline{x}}(x-2)^{\underline{2}}}{(x+1)(x-2)}$
$(x+1)(x-2)\left(2(x+1)(x-2)-3 x^{2}\right) \geqslant 0$
$(x+1)(x-2)\left(-4-2 x-x^{2}\right) \geqslant 0$
$(x+1)(x-2)\left(x^{2}+2 x+4\right) \leqslant 0 \quad$ multiplying by -1 so change the direction of the inequality
The discriminant of $x^{2}+2 x+4$ is -12 , so this quadratic has no real roots.
So the critical values are $x=2$ or -1
The curve $y=(x+1)(x-2)\left(x^{2}+2 x+4\right)$ is a quartic graph with positive x^{4} coefficient. A sketch of the curve is

The solution corresponds to the section of the graph that is below or on the x-axis, excluding those values of x for which the inequality is not defined, i.e. $x=-1,0$ or 2 .
So the solution can be expressed as either $-1<x<2 \quad x \neq 0$, or $-1<x<0$ or $0<x<2$
i To ensure multiplication by a positive quantity, multiply both sides by $(x-4)^{2}$
$\frac{2}{x<4} \times(x-4)^{x}<3(x-4)^{2}$
$0<(x-4)(3(x-4)-2)$
$0<(x-4)(3 x-14)$
So the critical values are $x=4$ or $\frac{14}{3}$
The curve $y=(x-4)(3 x-14)$ is a quadratic graph with positive x^{2} coefficient. A sketch of the curve is

The solution corresponds to the section of the graph that is above the x-axis.
So the solution is $x<4$ or $x>\frac{14}{3}$

1 j To ensure multiplication by a positive quantity, multiply both sides by $(x+2)^{2}(x-5)^{2}$

$$
\frac{3}{(x+2)} \times(x+2)^{2}(x-5)^{2}>\frac{1}{(x-5)} \times(x+2)^{2}(x-5)^{2}
$$

$$
\begin{aligned}
& (x+2)(x-5)(3(x-5)-(x+2))>0 \\
& (x+2)(x-5)(2 x-17)>0
\end{aligned}
$$

So the critical values are $x=-2,5$ or $\frac{17}{2}$
The curve $y=(x+2)(x-5)(2 x-17)$ is a cubic graph with positive x^{3} coefficient, so the curve starts in the bottom left and ends in the top right and passes through $(-2,0),(5,0)$ and $\left(\frac{17}{2}, 0\right)$.
A sketch of the curve is

The solution corresponds to the section of the graph that is above the x-axis.
So the solution is $-2<x<5$ or $x>\frac{17}{2}$

2 a To ensure multiplication by a positive quantity, multiply both sides by $(x+5)^{2}$

$$
\begin{aligned}
& \frac{3 x^{2}+5}{(x+5)} \times(x+5)^{x}>(x+5)^{2} \\
& (x+5)\left(3 x^{2}+5-(x+5)\right)>0 \\
& (x+5)\left(3 x^{2}-x\right)>0 \\
& x(x+5)(3 x-1)>0
\end{aligned}
$$

So the critical values are $x=-5,0$ or $\frac{1}{3}$
The curve $y=x(x+5)(3 x-1)$ is a cubic graph with positive x^{3} coefficient, so the curve starts in the bottom left and ends in the top right and passes through $(-5,0),(0,0)$ and $\left(\frac{1}{3}, 0\right)$.
A sketch of the curve is

The solution corresponds to the section of the graph that is above the x-axis.
So the solution in set notation is $\{x:-5<x<0\} \cup\left\{x: x>\frac{1}{3}\right\}$

Further Pure Maths 2

2 b To ensure multiplication by a positive quantity, multiply both sides by $(x-2)^{2}$
$\frac{3 x}{x-2} \times(x-2)^{2}>x(x-2)^{2}$
$x(x-2)(3-(x-2))>0$
$x(x-2)(5-x)>0$
So the critical values are $x=0,2$ or 5
The curve $y=x(x-2)(5-x)$ is a cubic graph with negative x^{3} coefficient, so the curve starts in the top left and ends in the bottom right and passes through $(0,0),(2,0)$ and $(5,0)$.
A sketch of the curve is

The solution corresponds to the section of the graph that is above the x-axis.
So the solution in set notation is $\{x: x<0\} \cup\{x: 2<x<5\}$
c To ensure multiplication by a positive quantity, multiply both sides by $(1-x)^{2}(2+x)^{2}$
$\frac{1+x}{1-x} \times(1-x)^{2 x}(2+x)^{2}>\frac{2-x}{2+x} \times(1-x)^{2}(2+x)^{x}$
$(1-x)(2+x)((1+x)(2+x)-(2-x)(1-x))>0$
$(1-x)(2+x)\left(x^{2}+3 x+2-\left(x^{2}-3 x+2\right)\right)>0$
$(1-x)(2+x) 6 x>0$
So the critical values are $x=-2,0$ or 1
The curve $y=(1-x)(2+x) 6 x$ is a cubic graph with negative x^{3} coefficient, so the curve starts in the top left and ends in the bottom right and passes through $(-2,0),(0,0)$ and $(1,0)$.
A sketch of the curve is

The solution corresponds to the section of the graph that is above the x-axis.
So the solution in set notation is $\{x: x<-2\} \cup\{x: 0<x<1\}$

Further Pure Maths 2

2 d To ensure multiplication by a positive quantity, multiply both sides by $(x+1)^{2}$

$$
\begin{aligned}
& \frac{x^{2}+7 x+10}{x+1} \times(x+1)^{\underline{2}}>(2 x+7) \times(x+1)^{2} \\
& (x+1)\left(x^{2}+7 x+10-(2 x+7)(x+1)\right)>0 \\
& (x+1)\left(x^{2}+7 x+10-2 x^{2}-9 x-7\right)>0 \\
& (x+1)\left(3-2 x-x^{2}\right)>0 \\
& (x+1)(1-x)(x+3)>0
\end{aligned}
$$

So the critical values are $x=-3,-1$ or 1
The curve $y=(x+1)(1-x)(x+3)$ is a cubic graph with negative x^{3} coefficient, so the curve starts in the top left and ends in the bottom right. A sketch of the curve is

The solution corresponds to the section of the graph that is above the x-axis.
So the solution in set notation is $\{x: x<-3\} \cup\{x:-1<x<1\}$
e Multiply both sides by x^{2}
$x+1>6 x^{2}$
$6 x^{2}-x-1<0$
$(3 x+1)(2 x-1)<0$
So the critical values are $x=-\frac{1}{3}$ or $\frac{1}{2}$
A sketch of the quadratic curve $y=(3 x+1)(2 x-1)$ is

The solution corresponds to the section of the graph that is below the x-axis, but excluding $x=0$ as the inequality is not defined for this value
So the solution in set notation is $\left\{x:-\frac{1}{3} x<0\right\} \cup\left\{x: 0<x<\frac{1}{2}\right\}$

Further Pure Maths 2

2 f Multiply both sides by $6(x+1)^{2}$
$\frac{6 x^{2}}{x+1} \times(x+1)^{2}>(x+1)^{2}$
$(x+1)\left(6 x^{2}-(x+1)\right)>0$
$(x+1)(3 x+1)(2 x-1)>0$
So the critical values are $x=-1,-\frac{1}{3}$ or $\frac{1}{2}$
The curve $y=(x+1)(3 x+1)(2 x-1)$ is a cubic. A sketch of the curve is

The solution corresponds to the section of the graph that is above the x-axis.
So the solution in set notation is $\left\{x:-1<x<-\frac{1}{3}\right\} \cup\left\{x: x>\frac{1}{2}\right\}$

Further Pure Maths 2

3 Multiply both sides by $(x+5)^{2}(x+4)^{2}$

$$
\begin{aligned}
& \frac{2 x+1}{x+5} \times(x+5)^{x}(x+4)^{2}<\frac{x+2}{x+4} \times(x+5)^{2}(x+4)^{x} \\
& (x+5)(x+4)((2 x+1)(x+4)-(x+2)(x+5))<0 \\
& (x+5)(x+4)\left(2 x^{2}+9 x+4-x^{2}-7 x-10\right)<0 \\
& (x+5)(x+4)\left(x^{2}+2 x-6\right)<0
\end{aligned}
$$

To find critical values solve $x^{2}+2 x-6=0$ using the quadratic formula:

$$
x=\frac{-2 \pm \sqrt{4+4 \times 6}}{2}=\frac{-2 \pm \sqrt{4+24}}{2}=\frac{-2 \pm \sqrt{28}}{2}=\frac{-2 \pm 2 \sqrt{7}}{2}=-1 \pm \sqrt{7}
$$

So the critical values are $x=-5,-4$ or $-1 \pm \sqrt{7}$
The graph of $y=(x+5)(x+4)\left(x^{2}+2 x-6\right)$ is a quartic graph with positive x^{4} coefficient that passes through the x-axis at $(-5,0),(-4,0),(-1-\sqrt{7}, 0)$ and $(-1+\sqrt{7}, 0)$. A sketch of the curve is

The solution corresponds to the section of the graph that is below the x-axis.
So the solution is $-5<x<-4$ or $-1-\sqrt{7}<x<-1+\sqrt{7}$
In set notation this is $\{x:-5<x<-4\} \cup\{x:-1-\sqrt{7}<x<-1+\sqrt{7}\}$

Further Pure Maths 2

4 Multiply both sides by $(2 x+1)^{2}(x-3)^{2}$

$$
\begin{aligned}
& \frac{x}{(2 x+1)} \times(2 x+1)^{\not x}(x-3)^{2}<\frac{1}{x-3} \times(2 x+1)^{2}(x-3)^{x} \\
& (2 x+1)(x-3)(x(x-3)-(2 x+1))<0 \\
& (2 x+1)(x-3)\left(x^{2}-5 x-1\right)<0
\end{aligned}
$$

To find critical values solve $x^{2}-5 x-1=0$ using the quadratic formula:

$$
x=\frac{5 \pm \sqrt{25-4 \times(-1)}}{2}=\frac{5 \pm \sqrt{29}}{2}
$$

So the critical values are $x=-\frac{1}{2}, 3$ or $\frac{5 \pm \sqrt{29}}{2}$

The graph of $y=(2 x+1)(x-3)\left(x^{2}-5 x-1\right)$ is a quartic graph with positive x^{4} coefficient that passes through the x-axis at $\left(-\frac{1}{2}, 0\right),\left(\frac{5-\sqrt{29}}{2}, 0\right),(3,0)$ and $\left(\frac{5+\sqrt{29}}{2}, 0\right)$. A sketch of the curve is

The solution corresponds to the section of the graph that is below the x-axis.
So the solution is $\left\{x:-\frac{1}{2}<x<\frac{5-\sqrt{29}}{2}\right\} \cup\left\{x: 3<x<\frac{5+\sqrt{29}}{2}\right\}$

Further Pure Maths 2

5 a The student did not square the denominators before multiplying, but has multiplied both sides by $x(3 x+4)$. This expression can have negative values, which would not preserve the inequality.
b Multiply both sides by $x^{2}(3 x+4)^{2}$
$\frac{x}{(3 x+4)} \times x^{2}(3 x+4)^{\not 2}<\frac{1}{\not x} \times x^{\not x}(3 x+4)^{2}$
$x(3 x+4)\left(x^{2}-(3 x+4)\right)<0$
$x(3 x+4)\left(x^{2}-3 x-4\right)<0$
$x(3 x+4)(x-4)(x+1)<0$
The critical values are $x=-\frac{4}{3},-1,0$, or 4

The graph of $y=x(3 x+4)(x-4)(x+1)$ is a quartic graph with positive x^{4} coefficient that passes through the x-axis at $\left(-\frac{4}{3}, 0\right),(-1,0),(0,0)$ and $(4,0)$. A sketch of the curve is

The solution corresponds to the section of the graph that is below the x-axis.
So the solution is $-\frac{4}{3}<x<-1$ or $0<x<4$
In set notation this is $\left\{x:-\frac{4}{3}<x<-1\right\} \cup\{x: 0<x<4\}$

Further Pure Maths 2

6 Consider each inequality in turn. First $\frac{4}{x}<x$
Multiply both sides by x^{2}
$\frac{4}{\not x} \times x^{2}<x \times x^{2}$
$x^{3}-4 x>0$
$x\left(x^{2}-4\right)>0$
$x(x+2)(x-2)>0$
So the critical values are $x=-2,0$ or 2
A sketch of $y=x(x+2)(x-2)$ is

The solution corresponds to the section of the graph that is above the x-axis.
So the solution is $\{x:-2<x<0\} \cup\{x: x>2\}$
Now consider $x<\frac{1}{2 x+1}$
Multiply both sides by $(2 x+1)^{2}$

$$
x(2 x+1)^{2}<\frac{1}{(2 x+1)} \times(2 x+1)^{2}
$$

$(2 x+1)(x(2 x+1)-1)<0$
$(2 x+1)\left(2 x^{2}+x-1\right)<0$
$(2 x+1)(2 x-1)(x+1)<0$
So the critical values are $x=-1,-\frac{1}{2}$ or $\frac{1}{2}$
A sketch of $y=(2 x+1)(2 x-1)(x+1)$ is

6 continued

The solution corresponds to the section of the graph that is below the x-axis.
So the solution is $\{x: x<-1\} \cup\left\{x:-\frac{1}{2}<x<\frac{1}{2}\right\}$
For the inequality $\frac{4}{x}<x<\frac{1}{2 x+1}$ to be satisfied, both solutions should hold.
So the solution $=(\{x:-2<x<0\} \cup\{x: x>2\}) \cap\left(\{x: x<-1\} \cup\left\{x:-\frac{1}{2}<x<\frac{1}{2}\right\}\right)$

$$
=\{x:-2<x<-1\} \cup\left\{x:-\frac{1}{2}<x<0\right\}
$$

Further Pure Maths 2

Challenge

As $\mathrm{e}^{x}>0$, multiply both sides by $\left(1-\mathrm{e}^{x}\right)^{2} \mathrm{e}^{x}$
$\frac{1}{\left(1-\mathrm{e}^{x}\right)} \times\left(1-\mathrm{e}^{x}\right)^{x} \mathrm{e}^{x}<\frac{1}{e^{t}} \times\left(1-\mathrm{e}^{x}\right)^{2} e^{t}$
$\left(1-\mathrm{e}^{x}\right)\left(\mathrm{e}^{x}-\left(1-\mathrm{e}^{x}\right)\right)<0$
$\left(1-\mathrm{e}^{x}\right)\left(2 \mathrm{e}^{x}-1\right)<0$
$\left(\mathrm{e}^{x}-1\right)\left(2 \mathrm{e}^{x}-1\right)>0 \quad$ multiplying by -1 and switching the direction of the inequality
The critical values are $\mathrm{e}^{x}=\frac{1}{2}$ or 1
To find out where the equality holds, use test values in each region
$\mathrm{e}^{x}=\frac{1}{4} \Rightarrow\left(\mathrm{e}^{x}-1\right)\left(2 \mathrm{e}^{x}-1\right)=-\frac{3}{4} \times-\frac{1}{2}=\frac{3}{8}$, which is greater than 0
$\mathrm{e}^{x}=\frac{3}{4} \Rightarrow\left(\mathrm{e}^{x}-1\right)\left(2 \mathrm{e}^{x}-1\right)=-\frac{1}{4} \times \frac{1}{2}=-\frac{1}{8}$, which is less than 0
$\mathrm{e}^{x}=\frac{3}{2} \Rightarrow\left(\mathrm{e}^{x}-1\right)\left(2 \mathrm{e}^{x}-1\right)=\frac{1}{2} \times 2=1$, which is greater than 0
So the inequality holds for $\mathrm{e}^{x}<\frac{1}{2}$ or $\mathrm{e}^{x}>1$
To express the solution in terms of x, take logs of both sides, $\mathrm{e}^{x}=\frac{1}{2} \Rightarrow x=\ln \frac{1}{2}, \mathrm{e}^{x}=1 \Rightarrow x=\ln 1$ So the solution is $x<\ln \frac{1}{2}$ or $x>\ln 1$

